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Abstract. A simple scheme is presented allowing the construction of most of the known and a
wide variety of new sufficient conditions for pure stateN -representability of reduced one-electron
density operators.

1. Introduction

The purpose of this paper is to gain new insights into the complicated nature of reduced one-
electron density operators. Most research has concentrated on discovering the necessary or
sufficient conditions for ensembleN -representability, since the publications by Coleman [1]
on the problem. Often, the dual-cone approach was employed due to the conic properties
of the reduced density operator set. A complete solution for reduced one-electron density
operators was evaluated by Kuhn [3], but only limited success was demonstrated with the
generalN -representability problem.

The apparently related problem ofpure stateN -representability turned out to be
significantly more complicated, and in the decade after statement of the problem [2], only
a limited number of partial solutions were published [5–7]. Later, the pure stateN -
representability problem was conjectured contentless for large particle numbers or high-rank
cases [8, 9], erroneously, as was marked by [10]. In spite of being regarded as one of the ten
most prominent research challenges for theoretical and computational chemistry [11], little or
no progress in this field has been made in recent years.

In the following paper, a simple and unified scheme is presented for the construction of
nearly all the known sufficient conditions for pure stateN -representability of reduced one-
electron density operators. Moreover, this scheme opens a route for constructing a wide variety
of new sufficient conditions.

2. Notation and definitions

With a finite orthonormal basis{ei, i = 1, 2, . . . , r} of one-electron state vectors (orbitals),
everyN -electron state vector can be expanded into configurations:

9 =
∑

(i1,i2,...,iN )

ci1,i2,...,iN (ei1 ∧ ei2 ∧ · · · ∧ eiN ). (1)

The configurations are written here using the antisymmetric wedge product ‘∧’. The sum in
(1) runs over all sets(i1, i2, . . . , iN ) of indices satisfying 16 i1 6 i2 6 · · · 6 iN 6 r.
0305-4470/99/224139+10$19.50 © 1999 IOP Publishing Ltd 4139
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By change of the orbital basis it is always possible to write9 in its polar Schmidt form [12]:

9 =
r∑
i=1

√
|λi | φi ∧ χi (2)

{φi} are the new one-electron states, called natural states, andχi are some proper choosen
(N − 1)-electron state vectors. The Schmidt form has the feature that on contraction theN -
electron density operatorρ9 := |9〉〈9| results in the diagonal(N−1)- respective one-electron
reduced density operators:

µ = tr1,2,...,N−1 |9〉〈9| =
r∑
i=1

λi |φi〉〈φi | (3)

0N−1 = tr1 |9〉〈9| =
r∑
i=1

λi |χi〉〈χi |. (4)

The non-zero eigenvaluesλi of µ and0N−1 are identical.

2.1. TheN -vector-representability problem

TheN -representability problem by pure stateswas stated by Coleman [2] as follows.

For a givenp-electron operator0p, give the (necessary and/or sufficient) conditions
that0p is the image ofsomepure stateN -electron density operatorρ9 = |9〉〈9| on
contraction:

0p = tr1,2,...,N−p ρ9. (5)

For simplicity, hereafter we use the shorter termN -vector representabilityinstead of ‘N -
representability by pure states’.

Asking for N -vector representability is therefore a sharpened version of the ensemble
N -representability problem, where the preimage in equation (5) is allowed to be an ensemble
N -electron density operatorρ, i.e. a convex combination of projectorsρ9 . The ensemble
N -representability problem was solved for reduced one-electron density operators, where a
necessary and sufficient condition was given entirely in terms of the spectrum [1, 3]:µ > 0,
(1− µ) > 0, trµ = N . However, the problem decidingN -vector representability could only
be solved for special cases and, in general, remained unsolved. Unless otherwise stated, we
are only concerned withN -vector representability in this paper.

3. Polytopes

In this section, a short survey on polytopes is given. Though a lot of useful ideas in polytope
theory are developed from our geometric intuition inR3, they often fail in higher dimensions.
Easily answerable questions in low dimensions often reveal themselves to be difficult problems
in higher dimensions. For a more complete and recent overview on polytope theory, we refer
to [14].

In order to fix the notation and language, some definitions are given here. A point
set K ∈ Rd is convex if with any two pointsx,y ∈ K, the straight line segment
{cx + (1− c)y : 0 6 c 6 1} also belongs toK. The convex hullof a point setK ∈ Rd
is the smallest convex set containingK. If K = {x1, . . . ,xn} is a finite point set in someRd ,
its convex hull is called aV-polytope:

P =
{
β1x1 + β2x2 + · · · + βnxn : βi > 0,

n∑
i=1

βi = 1

}
(6)
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A convex combination may be distinguished from an ordinary linear combination through
the requirements that the numbersβi be non-negative and sum to unity. The dimension of a
polytope is the affine rank of its points.

There is a complementary representation of aV -polytope, called aH -polytope, where the
polytope is described as the bounded intersection of a finite number of closed halfspaces in
someRd :

P = {x : Ax 6 1} (7)

whereA is a matrix. AH -polytope is bounded in the sense that it does not contain any ray
x + cy : c > 0,x,y ∈ Rd} with y 6= 0.

The intersection of some hyperplane{x : cx = 1} with a polytope is called aface. Faces
of dimension 0, 1,d − 1 are calledvertices, edgesandfacets, respectively. The vertices of a
polytopeP are the only points which cannot be represented as convex combinations of two
other points inP . They therefore provide the most compact point set describingP . The
supporting hyperplanes of facets fix the halfspaces of aH -polytope.

The complementary representationsV -polytopes andH -polytopes are mathematically but
not algorithmically equivalent. For example, it is algorithmically difficult to decide, whether a
given pointx is contained in aV -polytope, but easy to decide for aH -polytope. One method
to change from one polytope representation to the other is the Fourier–Motzkin elimination
(we refer to [14] for further details). The programPORTA [15] was used here for the tedious
computation of the Fourier–Motzkin elimination.

4. Sets of independent binary words

Consider the subset of vertices of ther-dimensional unit cube, where exactlyw coordinates
are ones and the otherr −w coordinates are zeros.r andw are kept arbitrary but fixed in the
following. There is a natural homomorphism between the vertices of the unit cube and binary
words of sizer and weightw by identifying the vector coordinates with the word bits. In the
following, we therefore use both the termsword andvector interchangeably.

Two words areadjacent, if there are exactlyw−1 one-bits common in both words. A set
of words is calledindependent, if there is no pair of adjacent words therein. By connecting all
adjacent words, the Johnson graphJ (r, w) is formed [4].

The Johnson graphs are invariant under bit permutation of the words, i.e. adjacent words
remain adjacent. Two sets of words are called equivalent, if there is a permutation of bits
acting as homomorphism between the two sets. A set of independent words is calledmaximal,
if there does not exist any other word non-adjacent to the words of the set.

4.1. Construction of maximal independent sets

Classifying the maximal independent sets for a given pair(r, w) is of no theoretical difficulty,
though in practice the only known general method is an exhaustive search over the whole graph.
Unfortunately, algorithms inplementing this search have a high demand on computational time
of non-polynomial order.

In table 1, a complete classification of inequivalent maximal independent sets for some
small word sizesr is presented. Since the number of classes grows rapidly with increasingr

andw as shown in table 2, a summary is only given here, but we can provide a long listing on
request.

Starting from known independent sets, other (not necessarily maximal) independent sets
can be constructed by a number of different methods as listed below.
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n k

Figure 1. The genealogical relation between equivalence classes of maximal independent sets
with same weight three but different sizen. The classes are labelled as in table 1, i.e. by sorting
lexicographically. A line connecting two equivalence classes indicates that the members of the
class with smaller word size are subsets of the class with bigger word size. For readability, the lines
connecting then = 10 andn = 6 classes are omitted. Note that then = 10 equivalence classes
xvi, xvii and xxii do not have any maximal independent subset with smaller word size.

Juxtaposition. Let {ai} and{bj } be two independent sets. By juxtaposing the two sets—
placing all possible pairs of words side by side—a new independent set{aibj } is obtained.

Example: placing the words of the sets{0011, 1100} and{000111, 111000} side by side
yields the independent set{0011000111, 1100000111, 0011111000, 1100111000}.

Adding constant bits. Placing in front of a set of independent words{bi} another wordx,
we get the independent set{xbi}. This is a special case of the juxtaposition above.

Example:x = 111 and{0011, 1100} result in the independent set{1110011, 1111100}.
Inversion. Given a set of independent words{bi}, another independent set can be

constructed by bitwise inversion.
Example: the set{00000111, 00011001} is mapped to{11111000, 11100110}.
Action of the permutation group. The orbit under the action of a nontrivial permutation

group may be an independent set, if a clever start word or a group of words and the appropriate
permutation group is choosen.

Example: with the start word 00001011 and the subgroup of the full permutation group
S8 generated by the cycle(12345678), one gets an independent set, which is maximal and
belongs to the equivalence classI (8, 3, iv) in table 1.

4.2. Bounds on the size of maximal independent sets

For given word sizer and weightw, the numberA(r,w) of words of the biggest possible
independent set is of much interest in coding theory (cf [13] and references therein). The
Johnson boundprovides an upper bound toA(r,w). It is usually very close to the exact value
A(r,w). Although there is no closed formula for the Johnson bound, it may be calculated by
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Table 1. Complete list of equivalence classesI (r, w, k) of maximal independent sets sorted
by word sizer, weightw and a labelk. For each equivalence class, the representative coming
lexicographically is given first. The sets are also sorted lexicographic.

r w k Class representative

r 2 i . . .0000011, . . .0001100, . . .0110000, . . .

6 3 i 000111, 011001, 101010, 110100
ii 000111, 111000

7 3 i 0000111, 0011001, 0101010, 0110100, 1001100, 1010010, 1100001
ii 0000111, 0011001, 0101010, 1001100, 1110000

8 3 i 00000111, 00011001, 00101010, 00110100, 01001100, 01010010, 01100001
ii 00000111, 00011001, 00101010, 00110100, 01001100, 01010010, 10100001
iii 00000111, 00011001, 00101010, 00110100, 01001100, 10010010, 11000001
iv 00000111, 00011001, 00101010, 01001100, 01110000, 10010010, 10100100, 11000001

8 4 i 00001111, 00110011, 00111100, 01010101, 01011010, 01100110, 01101001, 10010110, 10011001,
10100101, 10101010, 11000011, 11001100, 11110000

ii 00001111, 00110011, 00111100, 01010101, 01011010, 01100110, 10010110, 10011001, 10100101,
11000011, 11101000

iii 00001111, 00110011, 00111100, 01010101, 01011010, 10010110, 10100101, 11001001, 11100010
iv 00001111, 00110011, 00111100, 01010101, 01011010, 10100101, 10101010, 11000110, 11001001,

11110000
v 00001111, 00110011, 00111100, 01010101, 01011010, 10100110, 11001001, 11110000
vi 00001111, 00110011, 00111100, 01010101, 01101010, 10010110, 10101001, 11000011, 11011000,

11100100
vii 00001111, 00110011, 00111100, 01010101, 01101010, 10010110, 11001001, 11100100
viii 00001111, 00110011, 00111100, 01010101, 01101010, 11000110, 11011000, 11100001
ix 00001111, 00110011, 00111100, 01010101, 10101010, 11000110, 11011000, 11100001
x 00001111, 00110011, 01010101, 01101001, 10011010, 10101100, 11100010
xi 00001111, 00110011, 01010101, 01101010, 10010110, 10101100, 11011000, 11100001

9 3 i 000000111, 000011001, 000101010, 000110100, 001001100, 001010010, 001100001, 110000001
ii 000000111, 000011001, 000101010, 000110100, 001001100, 001010010, 010100001, 101000001,

110000010
iii 000000111, 000011001, 000101010, 000110100, 001001100, 001010010, 010100001, 111000000
iv 000000111, 000011001, 000101010, 000110100, 001001100, 010010010, 011000001, 100100001,

101000010, 110000100
v 000000111, 000011001, 000101010, 000110100, 001001100, 010010010, 011000001, 101000010,

110100000
vi 000000111, 000011001, 000101010, 000110100, 001001100, 010010010, 100100001, 111000000
vii 000000111, 000011001, 000101010, 000110100, 001001100, 010010010, 101000001, 110100000
viii 000000111, 000011001, 000101010, 001001100, 001110000, 010010010, 010100100,

011000001, 100010100, 100100001, 101000010, 110001000
ix 000000111, 000011001, 000101010, 001001100, 010010010, 011100000, 100100100, 101010000,

110000001

repeated application of the inequalities

A(r,w) 6
⌊ r
w
A(r − 1, w − 1)

⌋
A(r,w) 6

⌊
r

r − wA(r − 1, w)

⌋
(8)

using the symmetryA(r, r − w) = A(r,w) until A(r, 2) = br/2c is reached.
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Table 2. The number of equivalence classes of maximal independent sets sorted by word sizer

and weightw. In the fourth coloumn, the number of classes sorted by the set size (in brackets) is
given.

r w Total Sorted by set size

r 2 1 1(br/2c)
8 3 4 3(7), 1(8)
9 3 9 4(8), 3(9), 1(10), 1(12)

10 3 22 1(8), 5(10), 7(11), 8(12), 1(13)
11 3 85 2(11), 7(12), 38(13), 28(14), 8(15), 1(16), 1(17)
12 3 411 8(13), 13(14), 84(15), 187(16), 92(17), 20(18), 6(19), 1(20)
8 4 11 1(7), 5(8), 1(9), 2(10), 1(11), 1(14)
9 4 537 1(9), 27(11), 110(12), 161(13), 200(14), 35(15), 2(16), 1(18)

A lower bound toA(r,w) is given by

A(r,w) > 1

r

(
r

w

)
. (9)

The exact values ofA(r,w) are usually found by explicit construction of the maximal
independent sets. A huge table of valuesA(r,w) is collected in [13].

The upper and lower bounds are of importance here because they present a reasonable
guess at how good the sufficient conditions below will be.

5. Sufficient conditions forN -representability

With an arbitrary but fixed set of orthonormal one-electron statesφi , natural labels forN -
electron configurations are binary wordsb of sizer and weightN

b 7→ 8b :=
∧
i:bi=1

φi. (10)

The wedge product runs over all one-bits inb.
Example: the binary number 01001100 labels the configuration801001100= φ3 ∧ φ4 ∧ φ7.

Definition 1. A one-electron operator of finite rankr has propertyC(N) iff the eigenvalues
are equal to the coordinates of a vectord in someV -polytope defined by a set of independent
vectorsb1, b2, . . . , bk of sizer and weightN .

The main link between independent sets of words and theN -representability problem is
noted in the following theorem.

Theorem 1. Every one-electron operator of finite rankr with propertyC(N) is N -vector
representable.

Proof. With appropriate non-negative coefficients,βi , summing to unity, every point in the
polytope of a set of independent vectorsbi has at least one decomposition

d =
∑
i

βibi
∑
i

βi = 1 βi > 0. (11)

Then constructN -electron state vectors

9 =
∑
i

eiαi
√
βi8bi (12)
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with arbitrary phase factors eiαi . Because all configurations8bi in equation (12) differ by at
least two orbitals, all outer diagonal terms|8bk 〉〈8bl | with k 6= l of theN -electron density
operatorρ9 vanish by contraction to the reduced one-electron density operator

µ = tr1,2,...,N−1 ρ9 =
∑
i

∑
j :(bi )j=1

βi |φj 〉〈φj | =
r∑
i=1

di |φi〉〈φi |. (13)

By equality of the coordinatesdi and the eigenvaluesλi of µ as assumed, the theorem is
proved. �

We are now able to compare this simpleindependent set constructionwith previously
known sufficient conditions forN -vector representability.

Corollary 1. A one-electron operatorµ is N -vector representable if all eigenvalues have
multiplicity divisible byN (theorem 5 in [5]).

Proof. Take theN -clique of words of weightN

00. . .0 11. . .1︸ ︷︷ ︸
N

, 00. . .0 11. . .1︸ ︷︷ ︸
N

00. . .0︸ ︷︷ ︸
N

, . . .

which is a not maximal set of independent words. Every convex combination of these words
is a vector with coordinates degenerate by multiples ofN . �

Corollary 2. µ is two-vector representable iff all eigenvalues have multiplicity divisible by
two (theorem 6 in [5]).

Proof. Sufficiency follows from corollary 1. Though there is only one equivalence class
of maximal independent sets with weight two (cf table 1), necessity does not follow from
theorem 1 but may be deduced using the polar Schmidt form [5]. �

Corollary 3. µ of rankN + 2 is N -vector representable if all eigenvalues have multiplicity
divisible by two forN even and one additional eigenvalue is one ifN is odd (cf theorem 8
in [5]).

Proof. Use the one and only equivalence class of independent sets with word sizeN + 2 and
weight two. Every convex combination of these words is a vector with coordinates degenerate
by multiples of two. �

Corollary 4. µ isN -vector representable if the firstm eigenvalues are equal to unity and the
other(N − m) eigenvalues have propertyC(N − m) i.e. form a vector inside some polytope
of an independent set with word sizer −m and weightN −m (cf theorem 9 in [5]).

Proof. Let the vector formed by ther − m eigenvalues ofµ smaller than unity have a
decomposition (11) with some independent wordsbi . By attachingm one-bits to the wordsbi ,
another independent set arises, whose convex combination are alsoN -vector representable.�

Corollary 5. Let (N1, N2, . . . , Nm) be a partition ofN with Nk > 2. µ is N -vector
representable if the eigenvalues may be divided intom groups and thekth group of eigenvalues
has propertyC(Nk).



4146 C W Müller

Proof. The corollary follows immediately by the independent set construction
juxtaposition. �

Corollary 6. µ of rank six is three-vector representable iff the ordered eigenvaluesλ1 > λ2 >
· · · > λ6 ofµ solve the following system of (in)equalities [7]:

λ1 + λ6 = 1 λ2 + λ5 = 1

λ3 + λ4 = 1 λ5 + λ6 > λ4.
(14)

Proof. For sizer = 6 and weightw = 3, there are exactly two equivalence classes of maximal
independent sets (cf table 1). Take theV -polytope defined by the independent set

{001011, 010101, 100110, 111000} (15)

belonging to the equivalence classI (6, 3, i). Then generate a complete system of facet-defining
inequalities of theH -polytope from the vertex list of theV -polytope by Fourier–Motzkin
elimination:

λ1 + λ4 = 1 λ2 + λ5 = 1 λ3 + λ6 = 1

λ3 + λ4 > λ2 λ5 + λ6 > λ4 λ1 + λ2 > λ6

λ2 + λ4 + λ6 > 1.

(16)

Now assume the eigenvalues,λi , to be ordered non-increasing, then the only non-redundant
inequality is the one in system (14). All other independent sets and also the sets belonging to
the classI (6, 3, ii ) give rise to (in)equality systems weaker than (14).

For the necessity part of the proof, we refer to [7]. �
It is a very special situation here that different pairs of eigenvalues sum up to unity due

to the low polytope dimensionality. In general, this cannot be expected and the conjecture in
section 8 in [5] is clearly false.

Corollary 7. µ of rank seven is three-vector representable if the ordered eigenvaluesλ1 >
λ2 > · · · > λ7 ofµ solve the following system of inequalities [7]:

λ1 + λ6 + λ7 > 1 λ2 + λ5 + λ7 > 1

λ3 + λ4 + λ7 > 1 λ3 + λ5 + λ6 > 1.
(17)

Proof. Take theV -polytope defining maximal independent set

{0010110, 0011001, 0100101, 0101010, 1000011, 1001100, 1110000} (18)

belonging to the equivalence classI (7, 3, i) (cf table 1). Fourier–Motzkin elimination yields
theH -polytope description

λ3 + λ4 + λ7 > 1 λ2 + λ4 + λ6 > 1 λ2 + λ5 + λ7 > 1

λ3 + λ5 + λ6 > 1 λ1 + λ2 + λ3 > 1 λ1 + λ4 + λ5 > 1

λ1 + λ6 + λ7 > 1.

(19)

Due to the ordering of the eigenvalues, this system is equivalent to the system (17).�
Other independent sets do not necessarily result in the same system of inequalities. For

example, the representative of the equivalence classI (7, 3, i) leads to a single inequality

λ5 + λ6 + λ7 > 1 (20)

which is clearly more restrictive than system (17).
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In order to find the strongest system of inequalties, one has to check every independent set
of a given equivalence class and there is no guarantee that one resulting system of inequalities
covers all the others.

The assumption of ordered eigenvalues can be translated into theV -polytope picture. The
H -polytope defined by the chain of inequalities 1> λ1 > λ2 > · · · > λ7 > 0 and the equality
λ1 + λ2 + · · · + λ7 = 3 correspond to theV -polytope with vertices

x1 = (1, 1, 1, 0, 0, 0, 0)
x2 = (1, 1, 1

2,
1
2, 0, 0, 0)

x3 = (1, 1, 1
3,

1
3,

1
3, 0, 0)

x4 = (1, 1, 1
4,

1
4,

1
4,

1
4, 0)

x5 = (1, 1, 1
5,

1
5,

1
5,

1
5,

1
5)

x6 = (1, 2
3,

2
3,

2
3, 0, 0, 0)

x7 = (1, 1
2,

1
2,

1
2,

1
2, 0, 0)

x8 = (1, 2
5,

2
5,

2
5,

2
5,

2
5, 0)

x9 = (1, 1
3,

1
3,

1
3,

1
3,

1
3,

1
3)

x10 = ( 3
4,

3
4,

3
4,

3
4, 0, 0, 0)

x11 = ( 3
5,

3
5,

3
5,

3
5,

3
5, 0, 0)

x12 = ( 1
2,

1
2,

1
2,

1
2,

1
2,

1
2, 0)

x13 = ( 3
7,

3
7,

3
7,

3
7,

3
7,

3
7,

3
7).

(21)

We can now reformulate corollary 7 in the following new corollary.

Corollary 8. µ of rank seven is three-vector representable if the vector formed from the
eigenvalues ofµ is contained in bothV -polytopes (18) and (21).

In general, sets of eigenvalues ordered non-increasing 1> λ1 > · · · > λr > 0 and
satisfying

∑
i λi = N , considered as coordinates of polytope vectors, correspond to aV -

polytope with 1 +N(r −N) vertices. TheH -polytope description is therefore more compact.

Corollary 9. µ of rank nine is three-vector representable if the ordered eigenvaluesλ1 >
λ2 > · · · > λ9 ofµ solve the following system of (in)equalities:

9∑
i=1

λi = 3

λ1− λ3 + λ4 − λ6− λ7− 2λ9 6 0

λ1 + λ3− λ5− λ6− 2λ8− λ9 6 0

λ1 + λ2 − 2λ6− λ7− λ8− λ9 6 0

λ1− λ2 + λ4 − λ5− λ8− 2λ9 6 0.

(22)

Proof. Take theV -polytope defined by the maximal independent set

{000000111, 000011001, 000101010, 001001100, 001110000, 010010010,

010100100, 011000001, 100010100, 100100001, 101000010, 110001000}
belonging to the equivalence classI (9, 3, viii ) in table 1. Though there are 81 facet defining
inequalities for the correspondingH -polytope, only the four in (22) are non-redundant, if the
eigenvalues are ordered non-increasing. �

From the standpoint of the independent set construction of sufficiency conditions, it is very
unlikely that theN -representability problem becomes contentless for large one-electron rank
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r or particle numbern, as convex combinations of adjacent words do not generally have the
propertyC(n). On the other hand, there seem to be only a fewN -representable one-electron
operators not covered by the sufficient conditions above, as the numberA(r,N) is at most 1/r
smaller than the number of possible configurations for givenr andN .

6. Conclusion

We have shown how sufficient conditions forN -representability by pure states of one-electron
operators may be found with help of independent sets of binary words. By this construction,
every one-electron operator with eigenvalues identical to the coordinates of a vector inside
a certain type of polytope isN -representable by pure states. The polytopes are completely
defined by a set of vertices of ther-dimensional unit cube, where each pair of vertices differs
in more than one coordinate. TheN -representability problem is thereby converted into a
geometric problem, providing a visual interpretation. Most of the previously known and a
wide varity of new sufficient conditions forN -representability by pure states are obtained in
a unified approach.
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